As ADAS technology extends to critical, time-sensitive applications – such as emergency braking, front-collision warning and avoidance, and blind-spot detection…
As these systems extend to critical and time-sensitive applications – such as emergency braking, automatic parking, front-collision warning and avoidance, and blind spot detection – design engineers will need to fuse these different information sources into a single picture to deliver reliable real-time decisions.
“For automatic parking, you need to combine data from cameras, radar and sometimes ultrasound to give the vehicle an accurate sense of what’s going on around you,” said Curt Moore, general manager for Jacinto™ processors at our company. “None of these sensors would be accurate enough on their own, but by combining them, you can get a much more accurate picture of the space around you. This allows you to park in much tighter spaces without the risk of causing damage.”
Advanced safety systems are no longer reserved only for high-end automobiles. Nearly 93% of vehicles produced in the U.S. come with at least one ADAS feature – and automatic emergency braking is set to become standard across 99% of new cars in the United States by September.1
The shift is a result of the decreasing cost and size of sensors, such as TI mmWave radar sensors which integrate an entire radar system into a chip the size of a coin.
“Ten years ago, radar was predominantly used in military applications because of size, cost and complexity,” Miro said. “But today, radar is on the verge of becoming a standard component in the car.”
While the proliferation of affordable sensors opens up new applications, it also creates new challenges for ADAS engineers who need to design systems that bring together all the data streams and process them efficiently, while meeting tight affordability and power constraints.
In a single-sensor ADAS system, pre-processing data for object detection takes place close to the sensor in order to use that information immediately. But sensor fusion requires that raw, high-resolution data be instantly transmitted to a central unit for processing to form a single, accurate model of the environment that will help the vehicle avoid a collision.
“With all the data coming in from these sensor nodes, the challenge is making sure all of it is synchronized so the vehicle can understand what’s happening around you and make critical decisions,” said Heather Babcock, general manager for FPD-Link™ products at our company. “In order to transmit synchronized data in real time, it’s important to have high-bandwidth, uncompressed transmission capability because compressing data introduces latencies.”
Our FPD-Link communications protocol, which was initially created for transmitting digital video streams from graphics processors to digital displays, is designed for transmitting large amounts of uncompressed data over several meters with simple, easily routable cables.